Dependence of ventilation image derived from 4D CT on deformable image registration and ventilation algorithms

نویسندگان

  • Kujtim Latifi
  • Kenneth M. Forster
  • Sarah E. Hoffe
  • Thomas J. Dilling
  • Wouter van Elmpt
  • Andre Dekker
  • Geoffrey G. Zhang
چکیده

Ventilation imaging using 4D CT is a convenient and low-cost functional imaging methodology which might be of value in radiotherapy treatment planning to spare functional lung volumes. Deformable image registration (DIR) is needed to calculate ventilation imaging from 4D CT. This study investigates the dependence of calculated ventilation on DIR methods and ventilation algorithms. DIR of the normal end expiration and normal end inspiration phases of the 4D CT images was used to correlate the voxels between the two respiratory phases. Three different DIR algorithms, optical flow (OF), diffeomorphic demons (DD), and diffeomorphic morphons (DM) were retrospectively applied to ten esophagus and ten lung cancer cases with 4D CT image sets that encompassed the entire lung volume. The three ventilation extraction methods were used based on either the Jacobian, the change in volume of the voxel, or directly calculated from Hounsfield units. The ventilation calculation algorithms used are the Jacobian, ΔV, and HU method. They were compared using the Dice similarity coefficient (DSC) index and Bland-Altman plots. Dependence of ventilation images on the DIR was greater for the ΔV and the Jacobian methods than for the HU method. The DSC index for 20% of low-ventilation volume for ΔV was 0.33 ± 0.03 (1 SD) between OF and DM, 0.44 ± 0.05 between OF and DD, and 0.51 ± 0.04 between DM and DD. The similarity comparisons for Jacobian were 0.32 ± 0.03, 0.44 ± 0.05, and 0.51 ± 0.04, respectively, and for HU they were 0.53 ± 0.03, 0.56 ± 0.03, and 0.76 ± 0.04, respectively. Dependence of extracted ventilation on the ventilation algorithm used showed good agreement between the ΔV and Jacobian methods, but differed significantly for the HU method. DSC index for using OF as DIR was 0.86 ± 0.01 between ΔV and Jacobian, 0.28 ± 0.04 between ΔV and HU, and 0.28 ± 0.04 between Jacobian and HU, respectively. When using DM or DD as DIR, similar values were obtained when comparing the different ventilation calculation methods. The similarity values for the 20% high-ventilation volume were close to those found for the 20% low-ventilation volume. The results obtained with DSC index were confirmed when using the Bland-Altman plots for comparing the ventilation images. Our data suggest that ventilation calculated from 4D CT depends on the DIR algorithm employed. Similarities between ΔV and Jacobian are higher than between ΔV and HU, and Jacobian and HU.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of quantum noise in 4D-CT on deformable image registration and derived ventilation data.

Quantum noise is common in CT images and is a persistent problem in accurate ventilation imaging using 4D-CT and deformable image registration (DIR). This study focuses on the effects of noise in 4D-CT on DIR and thereby derived ventilation data. A total of six sets of 4D-CT data with landmarks delineated in different phases, called point-validated pixel-based breathing thorax models (POPI), we...

متن کامل

Four-dimensional computed tomography pulmonary ventilation images vary with deformable image registration algorithms and metrics.

PURPOSE A novel pulmonary ventilation imaging technique based on four-dimensional (4D) CT has advantages over existing techniques and could be used for functional avoidance in radiotherapy. There are various deformable image registration (DIR) algorithms and two classes of ventilation metric that can be used for 4D-CT ventilation imaging, each yielding different images. The purpose of this stud...

متن کامل

Evaluation of the ΔV 4D CT ventilation calculation method using in vivo xenon CT ventilation data and comparison to other methods

Ventilation distribution calculation using 4D CT has shown promising potential in several clinical applications. This study evaluated the direct geometric ventilation calculation method, namely the ΔV method, with xenon-enhanced CT (XeCT) ventilation data from four sheep, and compared it with two other published meth-ods, the Jacobian and the Hounsfield unit (HU) methods. Spearman correlation c...

متن کامل

A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images

Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...

متن کامل

Compressible image registration for thoracic computed tomography images

We developed a method for the calculation of dynamic ventilation images from four dimensional computed tomography (4D CT) images. A voxel mapping produced by applying deformable image registration to the components of the 4D CT image data set is central to the calculation. Current algorithms, such as optical flow, assume incompressibility in their formulation which is inaccurate for lung tissue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013